Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip.

نویسندگان

  • Abhishek Jain
  • Lance L Munn
چکیده

Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)--which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells--marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20-400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s(-1). The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry (A. Y. Fu et al., Anal. Chem., 2002, 74, 2451-2457; A. Y. Fu et al., Nat. Biotechnol., 1999, 17, 1109-1111), genetic analyses (M. M. Wang et al., Nat. Biotechnol., 2005, 23, 83-87; L. C. Waters et al., Anal. Chem., 1998, 70, 5172-5176) and circulating tumor cell extraction (S. Nagrath et al., Nature, 2007, 450, 1235-1241; S. L. Stott et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 18392-18397; H. K. Lin et al., Clin. Cancer Res., 2010, 16, 5011-5018).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.

The presence and quantity of rare cells in the bloodstream of cancer patients provide a potentially accessible source for the early detection of invasive cancer and for monitoring the treatment of advanced diseases. The separation of rare cells from peripheral blood, as a "virtual and real-time liquid biopsy", is expected to replace conventional tissue biopsies of metastatic tumors for therapy ...

متن کامل

Rare cell isolation and recovery on open-channel microfluidic chip

The ability to accurately detect and analyze rare cells in a cell population is critical not only for the study of disease progression but also for next flow cytometry systems in clinical application. Here, we report the development of a prototype device, the 'Rare cell sorter', for isolating and recovering single rare cells from whole blood samples. On this device, we utilized an open-channel ...

متن کامل

Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for...

متن کامل

Modulation of aspect ratio for complete separation in an inertial microfluidic channel.

Inertial microfluidics has been attracting considerable interest in recent years due to immensely promising applications in cell separations and sorting. Despite the intense attention, the moderate efficiencies and low purity of the reported devices have hindered their widespread acceptance. In this work, we report on a simple inertial microfluidic system with high efficiency (>99%) and purity ...

متن کامل

Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography.

We report a microfluidic approach for lithographically photo-patterning compartmentalized microparticles with any 2D-extruded shape, down to the cellular length scale (~10 microns). The prepolymer solution consists of a UV crosslinkable perfluorodecalin-in-water nanoemulsion stabilized by Pluronic(®) F-68. The nanoemulsions are generated using high-pressure homogenization and are osmotically st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 17  شماره 

صفحات  -

تاریخ انتشار 2011